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Given that any loading configuration in a cracked body can be represented by equiva-
lent crack face tractions, the general mixed-mode 3D formulation of the weight function
approach can be expressed in the following form:

Ka(n) = J.Tihu(xir n) ds (261)
Se

where T, are the tractions assumed to act on the crack surface, S..
See Chapter 9 for examples of practical applications of weight functions.

2.7 Relationship between K and ¢

Two parameters that describe the behavior of cracks have been introduced so far: the
energy release rate and the stress intensity factor. The former parameter quantifies the
net change in potential energy that accompanies an increment of crack extension; the lat-
ter quantity characterizes the stresses, strains, and displacements near the crack tip. The
energy release rate describes the global behavior, while K is a local parameter. For linear
elastic materials, K and ¢ are uniquely related.

For a through crack in an infinite plate subject to a uniform tensile stress (Figure 2.3),
G and K; are given by Equations 2.27 and 2.48, respectively. Combining these two equa-
tions leads to the following relationship between ¢ and K for plane stress:

g="1 (2.62)

For plane strain conditions, E must be replaced by E/(1 —V?). To avoid writing sepa-
rate expressions for plane stress and plane strain, the following notation will be adopted
throughout this book:

E’'=E for plane stress (2.63)
and
, E .
E' = 1—v2 for plane strain (2.64)

Thus the @ - K| relationship for both plane stress and plane strain becomes

K

- (2.65)

G

Since Equations 2.27 and 2.48 apply only to a through crack in an infinite plate, we have
yet to prove that Equation 2.65 is a general relationship that applies to all configurations.
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FIGURE 2.28
Application of closure stresses which shorten a crack by Aa.

Irwin [9] performed a crack closure analysis that provides such a proof, which is pre-
sented below.

Consider a crack of initial length a + Aa subject to Mode I loading, as illustrated in
Figure 2.28a. It is convenient in this case to place the origin a distance Az behind the crack
tip. Assume that the plate has unit thickness. Let us now apply a compressive stress field
to the crack faces between x =0 and Aa of sufficient magnitude to close the crack in this
region, as Figure 2.28b illustrates work required to close the crack at the tip is related to
the energy release rate:

AU
G =lim () 2.66
a0\ Aa fixed load ( )

Here AU is the work of crack closure, which is equal to the sum of contributions to work
from x =0 to Aa:

AU = j dU(x) 2.67)

x=0

and the incremental work at x is equal to the area under the force—displacement curve:

dU(x) = Z%Fy(x)uy(x) =0,,(x)u,(x)dx (2.68)
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The factor of 2 on work is required because both crack faces are displaced an absolute
distance u,(x). The crack opening displacement, u,, for Mode I is obtained from Table 2.2

by setting 6 =m:
", = (x+ 1K (a+Aa) [Aa—x (2.69)
2u 2n

Here K;(a + Aa) denotes the stress intensity factor at the original crack tip. The normal
stress required to close the crack is related to K, for the shortened crack:

_ Ki(a)

Gy = 2.7
N v (2.70)
Combining Equations 2.66 through 2.70 gives
DK (@)K (a+Aa) [ [A
gzlim(K+ YK (a)K;(a+ a)J’ a=x
A0 41’5“Ag X
0 (2.71)

_ (k + DK? _ K?
8u E’

Thus, Equation 2.65 is a general relationship for Mode I. The above analysis can be
repeated for other modes of loading; the relevant closure stress and displacement for
Mode Ilis 1,, and u, and the corresponding quantities for Mode III are 1, and u,. When all
three modes of loading are present, the energy release rate is given by

K} Ki Kj
_ & Ri | Rin

2.72
EE 2u 2.72)

G

Contributions to @ from the three modes are additive because energy release rate, like
energy, is a scalar quantity. Equation 2.72, however, assumes self-similar crack growth;
that is, a planar crack is assumed to remain planar and maintain a constant shape as it
grows. Such is usually not the case for mixed-mode fracture. See Section 2.11 for further
discussion of energy release rate in mixed-mode problems.

2.8 Crack Tip Plasticity

Linear elastic stress analysis of sharp cracks predicts infinite stresses at the crack tip. In
real materials, however, stresses at the crack tip are finite because the crack tip radius must
be finite (Section 2.2). Inelastic material deformation, such as plasticity in metals and craz-
ing in polymers, leads to further relaxation of crack tip stresses.

The elastic stress analysis becomes increasingly inaccurate as the inelastic region at
the crack tip grows. Simple corrections to LEFM are available when moderate crack tip
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